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Three-Dimensional Rectangular Duct Code
with Application to Impedance Eduction

Willie R. Watson*
NASA Langley Research Center; Hampton, Virginia 23681-2199

A zero flow, fully three-dimensional, variable impedance, rectangular duct aeroacoustics code that spans the
frequency spectrum of interest in duct liner research is developed. The governing equations and boundary con-
ditions in the duct are solved numerically using the finite element methodology. The methodology makes use of
a state-of-the-art, sparse equation solver to obtain the capability to study high-frequency sound waves that may
require millions of grid points for resolution. Noise suppression levels predicted from the code are in excellent
agreement with those obtained from mode theory. The single-processor performance of the solver, relative to that
of the more commonly used band solver, increases with frequency. At a frequency of 17 kHz, the band solver is 4.25
times slower and consumes 2.5 times more memory than the fully sparse equation solver. The duct aeroacoustics
code is combined with an optimization algorithm and used successfully to educe the impedance spectrum of a
ceramic liner. The primary problem with using the methodology to perform optimization studies at frequencies
above 14 kHz is excessive central processor unit time. The results support the recommendation that research be
directed toward exploitation of the multiprocessor capability of the solver to further reduce central processor unit

time.
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Nomenclature ko = initial estimate for k,
A A = amplitude of right- and left-moving acoustic N,M,Q = number of transverse, spanwise and axial
pressure mode grid lines in the duct
[A], [A], [B] = system matrices; order is NMQ NA, NL = number of nonzeroes in upper triangular
[A,1.18,] = major blocks of [A]; order is NM path of a sparse matrix '
[A°], [AS],[AY] = local element matrices; order is 8 {NC},{CN} = pointer vectors for a sparse matrix
[Al, [B], [C], = local wall impedance matrices; order is 8 NF = number of fill-ins
[F1, [9] P, p = acoustic pressure eigenmode and acoustic
[a.],[b.], [c,] = minor blocks of [A]; order is M pressure disturbance
[BY],[C"], local element volume matrices; R, x = normalized resistance and normalized
[DV],[G"] orderis 8 reactance
[eg] [ 4] = major blocks of [L]; order is NM t = dimensional time
Co, Po = ambient sound speed and density V,S = computational volume and computational
[D], [£] = diagonal and unit lower triangular matrices; surface
order is NMQ X, ¥,z = transverse, spanwise, and axial coordinates
{DA},{OA} = vector of diagonal and off-diagonal BL, BR, BE, BY = normalized admittances of wall lining
coefficients in a sparse matrix B.¢ = normalized admittance and normalized
[d,1, [Z] = diagonal matrix and identity matrix; impedance of the duct exit
order is NM AdB = noise suppressionlevel, dB
E,N, = error function and three-dimensional basis cEeR g8,V = normalized impedances of wall lining
functions (@}, {®°} = global and local vector of node pressures
{F}, {FR} = vectorsof ]ength NMQ containing source {d)}, {@R} = intermediate vectors of length NMQ for
effects forward substitution
{F1}, {F2} = vectors of length NM containing source ¢ = axial acoustic power
pressures ViV = Laplace and gradient operator
f,ps = source frequency and source plane acoustic : = vector dot product
pressure
H,W,L = he?ght, w@dth, and length of duct. Subscripts
h,w,l = height, width, and length of a finite element
i = /-1 K1 = matrix coefficient in the Kth row and /th
k, ke, ky, k, = free-space, transverse, spanwise, and axial column of a matrix
wave numbers m = local node counter, 1,2,...,8
q = major block counter, 1,2, ..., Q
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I. Introduction

AN noise accounts for a significant portion of community noise

radiated from commercial aircraftengines. Noise reduction re-
searchtoday focuseson reducingthe perceivednoise levels of future
aircraftby halfrelativeto currentlevels. Installationof acoustictreat-
ment, that is, liners, into the nacelles of aircraft engines remains one
of the most effective means for achieving these noise reduction
goals. However, future aircraft engines are expected to have engine
ducts with much shorter length to diameter ratios than traditional
aircraft. The shorter length to diameter ratios, that is, higher bypass
ratios, will severely tax the ability of conventional liners to absorb
engine noise effectively. To achieve the required noise reduction for
the higher bypass ratios, more advanced liners are needed.' These
include double- and triple-layer liners as well as those liners with
variable surface impedances. The acoustic treatment must be op-
timized to provide sufficient noise reduction for the higher bypass
ratios of the engine ducts.

To optimize the treatment for maximum sound suppression, fully
three-dimensional aeroacoustic codes, which account for realistic
geometries and increased liner complexity, are needed. The aero-
acoustic codes must be numerically based because exact solutions
are not possible for realistic geometries nor for wall impedance
variations. Recent research in impedance eduction techniques has
also highlighted the need for three-dimensional numerically based
codes to perform accurate impedance measurements? Currently,
industry and government design codes treat only two-dimensional
designs. Although several approximate three-dimensional models
are available these models make simplifying assumptions that are
not generally valid for acoustic disturbances propagating within the
walls of an aircraft nacelle. Within an aircraft nacelle, the engine
noise is often dominated by a few harmonics of a fundamental
frequency. It is, therefore, convenient to use a frequency-domain
analysis to take full advantage of the presence of only a few har-
monics in the acoustic field.

From a cursory examination of the physical size of engine na-
celles on current aircraft, and from knowledge of the predominant
fan tones, a three-dimensional acoustic model will require upward
of 100,000 degrees of freedom at even moderate frequencies. A
second complication is that the matrix equations resulting from
frequency-domain analysis are complex and indefinite. Complex,
indefinite systems of matrix equations require special techniquesto
obtain their solution, and these techniques become difficult to im-
plementefficiently for large systems of matrix equations. Currently,
band solvers are used to obtain the solution to large sparse sys-
tems of equationsin nacelle aeroacoustics? When applied in three-
dimensional computational methods, however, the band solvers
require an excessive amount of CPU time and RAM. This require-
ment has limited nacelle aeroacoustic codes to the study of low-
frequency sound sourcesin either two-dimensional or axisymmetric
nacelles.

The purpose of this work is to develop a zero flow, fully three-
dimensional, variable impedance, rectangular duct code for duct
liner aeroacoustics. To the author’s knowledge, this represents the
first effort to develop a fully three-dimensional aeroacoustic code
that is capable of spanning the full range of frequencies of current
interestin duct liner research. First, the frequency-domaindifferen-
tial equation and boundary conditions are presented. The solution
for the acoustic field is then approximated by a conventional finite
element method. The finite element method leads to a large, sparse
linear system of equations. A fully sparse equation solver is applied
to reduce the CPU time and RAM required for three-dimensional
solutions. RAM and CPU time statistics of the fully sparse solver are
comparedto that of the more commonly used band solver. Noise sup-
pression levels computed from the fully sparse solver are compared
to those predicted from a mode theory for the full range of frequen-
cies of current interest in nacelle liner research. As an application,
the three-dimensionalmodel is combined with an optimizationalgo-
rithm and used to educe the impedance spectrum of a ceramic liner.

II. Governing Equations and Boundary Conditions

Figure 1 shows the three-dimensional,rectangular-ductgeometry
and coordinate system used in this study. The volume enclosed by
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Fig. 1 Three-dimensional rectangular duct and coordinate system.

the ductis W units in width, H unitsin height,and L units in length.
At the source and exit plane of the domain, respectively, the source
plane pressure p, and the exit plane normalized (dimensionless)
impedance ¢ are known. The source plane pressure and normal-
ized exit impedance are assumed functions of position along their
respective boundaries. Throughout this paper, all impedances are
normalized with the characteristicsimpedance, that is, pyc, of the
air in the duct. Each wall of the duct is lined with a locally reacting
sound absorbing material, that is, liner, with normalized impedance
denoted by ¢. The normalized impedance is a function of position
along the duct axis and the duct perimeter so that

¢Lify=0,and(0<x <H, 0<z <L)

_JeRlify=W,and 0O <x < H, 0=z <L) )
¢= ¢Blifx=0,and(0<y<W, 0<z=<L)

¢Ulifx=H,and0<y <W, 0<z <L)

The equationthatdescribesthe propagationoflinear, steady-state,
acoustic pressure disturbances within the duct depicted in Fig. 1 is
the Helmholtz equation (see Ref. 4):

Vp+kp=0 )
where a time convention of the form ¢/?™/! has been assumed and
the free space wave number k is defined in the usual manner, that is,
k = 2w f)/cy. Although not considered here, Eq. (2) may be gen-
eralized to include uniform mean flows or be suitably transformed
to cylindrical coordinatesand used to study cylindrical duct geome-
tries. Along the source plane of the duct (z =0) the sound source
pressure is known:

P = Pps 3)

At the exit plane (z = L) the ratio of acoustic pressure to the nor-
mal component of acoustic particle velocity must equal the exit
impedance. When expressed in terms of the acoustic pressure dis-
turbance, the exit boundary conditionis*

9 _ —ik(£> @)
on ¢

The duct walls are assumed locally reacting, so that the wall bound-

ary condition is*
a
2 (L) ®

When the normalized wall impedance function ¢ is known,
Egs. (2-5) form a well-posed boundary value problem that can
be solved to obtain the acoustic pressure disturbance in the duct.
Once this pressure disturbance is obtained, it can be used to obtain
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the noise suppressionin decibels AdB that is produced by the wall
lining*:

¢ (0)
AdB = 10| log,, ——=
|: 0810 ¢(L):|
1 i v p*(x,y,2)
¢(Z)_5Re{2ﬂpof/0/o s e
(6)

Generally, it is desirable to design an optimal liner. This is
achieved by repeatedly cycling through the solutionto the boundary
value problem [Egs. (2-5)] for given values of the wall impedance
function ¢, until the impedance function that maximizes the sound
suppression AdB is obtained. Conversely, if the upper wall acoustic
pressure profile is known, the impedance ¢ can be determined using
an iterative procedure? This procedure consists of repeated cycling
through the solution to the boundary value problem described by
Eqgs. (2-5) and obtaining the upper wall acoustic pressure profile
for each impedance function ¢. As each new wall pressure profile
is computed, it is compared to the known profile until convergence
is achieved within an accepted error tolerance.

Whether the objective is to obtain the wall lining that maximizes
the noise suppression for a given wall impedance function (optimal
liner design) or to obtain the unknown impedance for a known upper
wall pressure (impedance eduction), an exact solution for the acous-
tic pressure field is not obtainable except for severely restrictive as-
sumptions on the impedance functions. The question is, thus, not
whether to use a numerical techniqueto obtain the acoustic pressure
disturbance, but rather which numerical technique to use. Because
of the promising results obtained by the finite element methodology
in other fields of continuum mechanics and from initially promis-
ing applicationsto two-dimensionalaeroacousticsapplications? the
finite element methodology was chosen for this study.

III. Finite Element Methodology

The general description of the finite element methodology that
is presented in this paper is detailed in the following step-by-step
procedure™®: 1) discretization of the computational domain, 2) ap-
proximationsfor the unknownvariables,3) derivationof the element
stiffness matrix, 4) assembly of the system matrix, and 5) implemen-
tation of boundary conditions.

This sequence of steps describes the actual processes followed in
setting up the system matrix equation, which must be solved by an
equation solver.

A. Discretization of the Computational Domain

When applied to the current three-dimensional, duct aeroacous-
tics problem, the finite element method may be interpreted as an
approximationto the continuous acoustic field as an assemblage of
rectangular prism elements as shown in Fig. 2. Here, evenly spaced
points N, M, and Q are assumed in the transverse, spanwise, and
axial directions, respectively. A typical rectangular prism element
with transverse, spanwise, and axial dimensions/, w, and/ is shown
in Fig. 3. The rectangular prism element consists of eight local node
numbers labeled 1, 2, ...8, respectively, as shown in Fig. 3. The
objectiveis to obtain the unknown acoustic pressure disturbances at
each of the NMQ nodes.

B. Approximations of the Unknown Variables
Within each element, p is approximatedas a combinationof eight
linearly independent basis functions:

m=38

P=Y Nupu @)

m=1

= ()52 ()

Fig. 2 Finite element discretization of three-dimensional computa-
tional domain.
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Fig.3 Typical three-dimensional element.
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The basis functions Ny, N,, ..., Ng comprise acompleteset of basis
functions. The normalized admittance functions, that s, the recipro-
cal of the normalized impedance functions, are expanded in similar
series:

ve=i= () [(52)+ ()8
(DE)p+(52)a]
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C. Derivation of the Element Stiffness Matrix

Galerkin’s finite element method is used to minimize the field er-
ror and develop the element stiffness matrix. The field error function
is defined as

E=Vp+kp (10)

Contributions to the minimization of the field error function for a
typical element due to local node m are

/ENm v =/[V2P+k2P]deV an
14 14

The second derivative terms in Eq. (11) are reduced to first deriva-
tives using Green’s second identity:

. 9
/EN,,, dV:/ [—Vp-VN,,,+k2pN,,,]dV+/—pN,,, ds
v v s on
(12)

Elimination of the second derivative terms from the surface integral
in Eq. (12) is required so that the linear basis functions N,, can
be used. Elimination of the second derivative terms from the inte-
gral also has the advantage that all impedance boundary conditions
can be incorporated into this surface integral. The incorporation
of the boundary condition into the surface integral also allows a
choice of basis functions that do not have to satisfy explicitly any
impedance boundary conditions.
The contribution to the surface integral

/@mw (13)
g on

is identically zero for all elements except those that lie along an

impedanceboundary.Substituting the exit planeboundary condition
into the surface integral in Eq. (13) gives, along the exit boundary,

/H—I’Nm s = —ik/(£>Nm ds (14)
s on s \¢

whereas for elements that lie along the upper, lower, and sidewalls

of the duct
/H—I’Nm s = —ik/(£>N,,, ds (15)
s on s \¢

The contribution to the minimization of the field error for each
element e when collected for each of the eight local nodes m is
expressed in matrix form as

fv EN,dv

EN,dV
Jy U =AY (16)

fv ENgdv
[A]=[A"]1+[A®], {®}={p1, P2, P3, P4, Ps, Ps, P71, Ps}”
(17)

In Eq. (17), [A"] and [AS] are the contributions to [A¢] due to the
element volume and the impedance boundaries, respectively. Each
matrix in Eq. (17) is an 8 x 8, complex, symmetric matrix that is
given explicitly as

v kK>whl v wl hl v wh .,

[A ]:2_16[G ]_E[B ]—%[C ]—@[D 1 (18

(8 4 2 4 4 2 1 2]

4 8 4 2 2 4 2 1

2 4 8 4 1 2 4 2
[(GY]= 4 2 4 8 2 1 2 4 (19)

4 2 1 2 8 4 2 4

2 4 2 1 4 8 2 4

1 2 4 2 2 2 8 4

12 1 2 4 4 4 4 8]

N
[\S}
|
[\S}
|
N
[\S}
—_
|
—_
|
[\S}

[BY]= (20)

-2 2 -4 -1 1 2 =2

v 2 -2 -1 4 1 -1 =2 2
[(C"]= 2D

-2 2 1 -1 4 -4 =2 2

-2 2 1 -1 -4 2 =2

-1 2 =2 =2 2 4 —4

4 2 2 —4 -2 -1 =2
-4 4 2 1 =2 —4 -2 -1
-2 2 4 2 -1 =2 -4 =2
b 2 -2 —4 4 -2 -1 -2 —4 22
(D)= -2 2 1 -1 4 2 1 2
-2 2 1 -1 -4 4 2 1
-1 =2 -4 =2 1 2 4 2
|2 -1 =2 -4 2 1 2 4]
ikhw ikwl ikwl ikhl ikhl
AS]=— - Bl - Cl——I[F]l- —
LA"] 144 LAl 144[ ! 144[] 144[ ! 144[g]
(23)
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Asg
Asz
Asg
Ass_|

S O O o o o o o

S O O o o o o o
S O O o o o o o

0
0

Gsg

Gug

Grs
Gss |

Ass = 9Bs +3Bs + Br + 3Bs
Ase = 3Bs + 3P + B7 + Ps
Asy = Bs + B + B + B
Ass = 3Bs + Bs + B + 385
Ags = 3Bs +9Bs + 3B7 + Bs
Ag = Bs + 3Bs + 3B7 + Ps
Az = 13_5E +3Bs +9B; + 3Bs
Azg = Bs + Bo + 3B +3Bs
Ass = 3Bs5 + Bs + 37 + 9Bs

By =98 +3B; + 3% + By
By =3B} +3B; + B + By
Bis =3B0 + By + 3B + By
Bis = Bl + Bi + BE + BE
Buy =3BF +9BF + BE + 3B
By = Bl + 38, + & + 385
Bss =3B + Bi +9B% +3p¢
Bss = BE + BE +3BL + 3B
Bss = BE +3BF +3B8L +98L

Cyp =9BR +3BR + 3B + pR
Coy =385 + 385 + &+ BF
Cas =3B + B + 3B + B
Cxs =3B + 9B + BE + 3Bf
Cs6 = BS + BF + BE + BF
Cyy = BR+3p8 + R +38F
Ces =3B + B + 9B + 3BF
Cer = ﬁzR +l33R + 3l3(,R + 3137R
Cry = BR +3p8 + 388 + 9%

Fu =98 +387 +387 + B¢
Fia =30 + 31 + B2 + B
Fis =360 + 87 + 382 + 8
Fie =Bl + B3 + B2+ 8¢

T =3B +987 + S +38¢
Fae = B + 387 + B2 + 388
Fss =3B + 87 +9B87 +38¢
Fso = Bl +BY + 3B + 388
Foo = B +3B7 +3B2 + 98¢

Gy = 9By +3B] +387 + B¢
Gas =3B + 3B + 87 + 8¢
Gs1 =385 + B + 387 + B¢
g38 :ﬁ3U +ﬁf +137U +13§]
Gus = 38Y + 9BV + BY +3pY
Gas = BY +3BY + Y +3p¢
G =3B + B + 987 + 3By
Gos = BY + By +387 +38§
Gss = ﬁ3U + 3}%’ + 31370 + 9@%}
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D. Assembly of the System Matrix

Assembly of the system matrix, that is, a matrix representing the
entire system, from the element stiffness matrices is a fundamental
feature of all finite element computations. Appropriate shifting of
rows and columns is all that is required to add the local element ma-
trix [A¢] directly into the system matrix.>® The system of equations
resulting from the assembly of the elements is of the form

[Al{®} = {0} (29)
[A]  [B]
(B,]"  [Ay]  [Bs)
[A] = [B;]" [As] [Bi]
[Bol” [Ag]
(@) = ({®)}, { D2}, (D3}, ..., (P} (30)

Each major block ([A,] and [B,]) is an NM x NM complex matrix,
and the diagonal major blocks ([A,]) are symmetric.

E. Implementation of the Sound-Source Boundary Condition

The system of equations given by Eq. (29) can be solved to obtain
the solution vector once the sound-source boundary condition, that
is, Eq. (3), has been substituted. To satisfy the sound-source bound-
ary condition, all nodal values of the acoustic pressure at the source
plane are simply set to the known value of source pressure p,. This
is achieved by modifying Eq. (30) to

[A){®} = {F} (31)
[Z1 0]
[0 [A)] [Bs]
[A]= [Bs]" [A;]  [Bi]
[Bol" [Ap]
{F\}
{Fy}
{F} = {0} ¢, {F,} = —[B,]"{F}} (32)
{0}

where {F} is a vector of length NM that contains the value of the
source pressure p, at the NM nodes in_the source plane. Note that
only the first NM rows and columnsof [A] [see Eq. (29)] are modified
by application of the sound-sourceboundary condition. The substi-
tution of a sound-source boundary condition such as Eq. (3) into a
matrix equation such as Eq. (29) is described in detail elsewhere.

IV. Equation Solvers

The system matrix equation [Eq. (31)] may be solved on a dig-
ital computer to obtain the solution vector. The choice of an equa-
tion solver that can function in an efficient manner is of paramount
concern. In the simplest formulation of an equation solver, both the
zero and nonzero coefficient within the system matrix [A] are stored
and operated upon. This approachrequires approximately (NMQ)?
storage locations, and the work, that is, the total number of arith-
metic operations, required to obtain the solution vector is approx-
imately (NMQ)?. This method of solution is impractical for three-
dimensional aeroacousticsapplications because there is not enough
RAM to store the (NMQ)? coefficients on modern computers.

Fortunately, the system matrix equation (31) is amenable to so-
lution techniques that take advantage of the special character of the
system matrix. In particular, the system matrix is symmetric and
thinly populated or sparse. The two most commonly used methods
for solving sparse equation systems such as Eq. (31) are the band
solver and the fully sparse solver.

A. Band Solver

The banded form of Eq. (31) is well suited for repeated solutions
of large systems of equations. The band solver (BS) used in this
paper is based on a Gauss-Doolittle factorization of the coefficient
matrix, followed by the sequential operations of forward and back-
ward substitutionto obtain the solution vector. The Gauss-Doolittle
factorization of [A] is readily obtainable (see Ref. 7):

[A] = [£1DIL)” (33)
[er]
[fz] [co]
(L] = (fs] [es]
[fol lcol
[d]
[ds]
D] = [d5] (34)
[do]

The matrix coefficients in [£] and [D] are determined by applying
the rules of block matrix multiplicationto Eq. (33).”
Equation (31) decomposes into two triangular systems,

[L1{®} = {F} (35)
[DIL] {®} = {D} (36)

The solutionsto the lower triangularsystem [Eq. (35)] and the upper
triangular system [Eq. (36)] are obtained using forward and back-
ward substitution, respectively. We achieve economy of RAM and
CPU time by taking into account that only the Q diagonal major
blocks[A,], and the (Q — 1) off-diagonalmajor blocks[B,] need to
be stored or operated on during the solution phase. During the for-
ward and backward substitution phases of the solution, we need to
retain only [¢,], [ f,], and [d,]. Thus, to achieve economy of RAM,
we overwrite [¢,] into [A,] and [ f,] into [B,] during the solution
phase.

B. Fully Sparse Solver

BS achieves economy of RAM and CPU time by allowing for
storage and arithmetic operations only on coefficients within the
major blocks of [A]. However, a significant number of coefficients
within the major blocks of [A] are zero. Each major block [A, ] and
[B,] [see Eq. (32)] is an NM x NM block-tridiagonalmatrix:

(@l [&]
[b,] (@] [é]
(3] [as] [es]

[by]  lay] (37)

Each minor block of [A] ([a,], [b,] and [¢,]) is a complex M x M
tridiagonal matrix. Thus, the major blocks of [A] are also highly
sparse.

The sparseness of the major blocks of [A] can be exploited for
improved efficiency by using a more sophisticated refinement of
the sparse solver than a BS provides. In the refined version of the
sparsesolver[fully sparse solver (FSS)], all computationand storage
are performed only with the nonzero coefficients within the major
blocks of [A]. In this section the major tasks involved in the appli-
cation of FSS to the solution of Eq. (31) are briefly explained. The
success of FSS is due to improved technologies,for example, sparse
data storage formats, sparse reordering algorithms, sparse symbolic
factorization,sparse numerical factorization,and forward/backward
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solution phases, and bookkeepingstrategies that are ideal for imple-
mentation on a digital computer. More detailed information may be
found in Refs. 8 and 9. The FSS equation-solvingstrategy and stor-
age formats are demonstrated on the following symmetric system
of equations:

[Al{®} = {F} (38)

Ay Ap Az 0 A Ag
Ap Ap 0 Ay 00
Az 0 Ay; O 0 0

4] =
0 Ay 0 Ay As 0
As 0 0 As As 0
(A 0 0 0 0 A
Fl q)l
F2 q)z
=100 e 2 (39)
Fy [ON
F5 q)S
F() q)()

1. Sparse Data Storage Format

The sparse descriptions of the symmetric system matrix are fully
described by the four one-dimensionalvectors {OA}, {CN}, {DA}
and {NC}:

{OA} = {A127 A137 AlS? Al(n A247 A45}T
{CN}=1{2,3,5,6,4,5)" (40)
{DA} = {A117 A227 A337 A447 ASS? A66}T

{NC}=1{4,1,0,1,0,0}" 41

The pointer vectors {C N} and { N C} fully describe the nonzero pat-
tern of [A], whereas the numerical values of [A] are contained in
{OA} and {DA}. Note that { DA} contains the numerical values of
the diagonal coefficients of [A], and { O A} contains the numerical
values associated with the off-diagonal nonzero coefficients. The
pointer vector { N C} contains the number of off-diagonal nonzero
coefficients in the upper triangular part of each row of [A], and
{C N} containsthe columnnumbers associated with the off-diagonal
nonzero coefficients in {O A}. The columnwise storage order pre-
sented here was chosen because it is easier to implement than a
rowwise order.

2. Sparse Reordering Algorithms

For maximum efficiency, one should never factorize and solve
a sparse system such as Eq. (31) directly. The system of equa-
tions should be reordered using a reordering vector (REORDER } to
obtain

[Bl{®r} = {Fr} (42)

The numerical values in [B], {®z} and {F} are identical to those
in [A], {®}, and {F}, respectively; however, these numerical values
have been moved to differentlocationsin the reordered system. The
reordered system [Eq. (42)] may be factorized and solved much
more efficiently than the original system [Eq. (31)]. The reordering
vector, that is, (REORDERY}, is then used to reorder vector {® } and
recover the solution for {®}. The purpose of reordering algorithms'®
[such as multiple minimum degrees (MMD) or nested dissection] is
to provide {REORDER}.
Without reordering, the Gauss-Doolittle factorizationof [A] is

[A] = [£1DIL)” (43)

['12 ['13 0 [' 15 ['16
523 Loy Ezs ‘526
1 534 535 ‘536
0 1 Lis L

0 0 1 L
00 0 0 0 1

(L1 = (44)

(= e -
(= -

During the factorization,many of the zero-valueterms appearingin
the upper triangular part of [A] are nonzero in the upper triangular
part of [L]T. These extra nonzero terms created during the factor-
ization of [A] are referred to as fill-ins and are denoted by L;.
In the upper triangular part of [/.:]T one has eight extra (or new)
nonzero fill-ins. As a result, one defines

NF =38, NL=NA+NF=6+8=14 (45)

In general, the number of nonzero coefficientsin the uppertriangular
part of [L]T, that is, NL, is much larger than those in [A], that is,
NA.

Applying the MMD reordering algorithmto [A] will result in the
following reordering vector:

{REORDER} = {4, 6, 3,5, 1,2}" (46)

The methodology used by MMD to determine {REORDER} in-
volves dynamic programming techniques. (A full discussion of this
methodologyis beyond the scope of this paper.) Reordering the rows
and columns in Eq. (31) according to {REORDER} gives

[Bl{®r} = {Fr} 47

Ay 0 0 Ay 0 Ay
0 Ag O 0 Ag O
0 0 A;; 0 A3 O

{B} =
As 0 0 Ass As O
0 A16 A13 A45 All A12
[ Ay 0 0 0 Ap Ay
F, D,
F6 q)()
Fa=100 en={> (48)
FS q)S
Fl q)l
F2 q)Z
Now one factorizes [ B] to obtain
1 0 0 L4 0 L]
01 0 0 Ly O
001 0 Lss O
(Bl = [LIPILY", (L) = .
0 0 0 1 Ly Ly
00 0 O 1 Lse
|0 0 0 0 0 1]
(49)

Note that the reordered matrix [ B] can be factorized more efficiently
than [A] because there is only one fill-in, that is, Ly, in [£]7.

3. Sparse Symbolic Factorization

The reordered matrix [B] is fully described by the following four
vectors:

{NC}=1{2,1,1,1,1,0)"
{DA} = {A44»A667A33»A55»A11»A22}T (50)
{CN}=1{4,6,5,5,5.6)"

{OA}: {A457A247A16»A13,A157A12}T (5D
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Before performing the numerical factorization of the factored ma-
trix, it is necessary to go through the sparse symbolic factorization
so that 1) the nonzero pattern of [/.:]T can be determined (including
the locations of fill-ins) and 2) the value of NL can be determined
to allocate adequate RAM for [L]T.

On completion of the sparse symbolic factorization phase, the
pointer vectors {NC} and {CN} that fully describe the nonzero
pattern in (£]7 are completely known, and NL is determined:

{NC}=1{2,1,1,2,1,0), {CN}=1{4,6,5,5,5,6,6)"

NL=NA+NF=6+1=7 (52)

4. Sparse Numerical Factorization Phase
In this phase, the numerical values in [/.:]T and [D] for the
reordered matrix [B] are computed:

{OA} = {[-"147 ‘Cl(n [-"257 [-"357 [-"457 [-"467 ‘CS()}T (53)
(DA} ={1.1,1.1,1, )" (54)
By, =1
D — 1—1 55
"By =) Diklis I=2.3.....6) &)
K=1
Ly, =
By
(I=1,J=2....6
DII

I1—1 (56)

Dk LxiLks
By — _— (U #1L,J=1+1,...
1J I; D[] ( 75 ) + ) ) 6)
Note that the first column of [D] and [£] is computed first. Sub-
sequent columns of [£] and [D] are computed using Eqgs. (55) and
(56). Because the diagonals of [£] are known a priori, the diagonal
values of [D] are overwritten into the unit diagonal values of [£]
for computational efficiency.

5. Forward/Backward Solution Phase

The solution to the reordered system [Eq. (47)] is obtained in two
phases.

1) In the first phase (forward solution phase), an intermediate
solution vector {®} is computed from the solution of the matrix
equation

[L1{®r} = {Fg} (57)

2) In the second phase (backward solution phase), the solution
vector for the reordered system {® r} is computed from the solution
to the matrix equation

[DIL] {Dr} = {Pr) (58)

The vector {®y} is reordered using {REORDER} to obtain the so-
lution vector {®}, which satisfies the system matrix equation (38).

V. Mode Solution

Exact solutions for the acoustic pressure field in the duct do not
exist for arbitrary forms of the normalized impedance functions.
It is possible, however, to develop a modal solution when these
impedance functions are constant. This modal solution will be used
to validate the accuracy of the equation solvers that were presented
in the preceeding discussions. The single mode solution (in the duct
of Fig. 1) for constantimpedanceis obtained by applying separation
of variables to the boundary value problem describedin Eqgs. (2-5):

px,y,2) = [Ae ™% + Ae'*)P (59)

A= LN g (g
(k:p +H)

(k)? = (k) — (k)* — (ky)? (61)
z R L
kW) tan(k, W) — ——AWWBZEB] ()
[1+ pLpr@w)? [ (e, W]
; U B
(k, H) tan(k, H) — iKH)_+ B =0 (63)
[14B5BY (kH)2 [ (k. H)]
ikp® ikpt
P = |:cos(kxx) + sin(kxx)i| |:cos(kyy) + sin(kyy)i|
X y
(64)

Note that k, and k, are obtained by solving the transcendentalequa-
tions (62) and (63), respectively.

VI. Results

An in-house computer code that assembles the system matrix in
either BS or FSS format was written and combined with the appro-
priate solver to provide the capability to solve three-dimensional
aeroacoustics problems. RAM and CPU time statistics were com-
pared for both solvers, and the noise suppression predicted from
the solver solutions was compared to that predicted from the mode
theory presented in the preceding section. Results were computed
on an in-house SGI ORIGIN 2000 computer platform with 13 GB
of RAM and eight processors. Results were run on a single proces-
sor with double-precision (64-bit) arithmetic. The duct geometry
was identical to that of the NASA Langley Research Center flow
impedance tube.? This three-dimensional duct has a square cross
section 0.0508 m in width (W = H =0.0508 m) and 0.812 m in
length (L =0.812 m). The upper and two side walls of the duct
are rigid (¢ =¢® =¢Y = 00), and the lower wall has a constant
impedance. A much more complete description of the duct is given
in Ref. 2. All calculations were performed at standard atmospheric
conditions, and the source frequency was chosen to span the full
range of frequencies currently of interestin duct liner research.

A. Rigid-Wall Duct Studies

In the rigid-wall duct, thatis, ¢L = ¢® = ¢ % = ¢V = 00, the tran-
scendental equations (62) and (63) have exact analytical solutions
for the spanwise and transverse wave numbers:

kW =0,m,2m, ... (65)
k,H=0,m,2m,... (66)

These exact wave numbers [Eqgs. (65) and (66)] have been used
to determine the finite element grid required to resolve all cut-on
(propagating) modes in the duct. Table 1 shows the minimum values
of N, M, and Q requiredto resolve all cut-on modes for frequencies
up to 21 kHz. Note that the current industry practice is to use scale
models as small as one-fifth the size of full-scale engines. The full-
scale frequency range of interest is typically 0.5-4.0 kHz. Thus, the
frequency range of interest for the smallest scale, that is, a one-fifth
scale model, is 2.5-20 kHz. Therefore, computational results for
frequenciesbeyond 21 kHz are not presented in this paper. Further,
in determining N, M, and Q in Table 1, the author has used the gen-
erally acceptedrule that approximately 12 points per wavelengthare
required (in each of the three coordinate directions) to resolve ac-
curately a cut-on mode. Note that at the highest frequency (21 kHz)

Table1 Grid points required to resolve
cut-on modes in the rigid-wall duct

£, kHz N M 0 NMQ

4 6 6 114 4,104
7 12 12 200 28,800
11 18 18 313 101,412
14 24 24 399 229,824
17 30 30 484 435,600
21 36 36 599 776,304
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Table2 CPU time requirements
in the rigid-wall duct

f,kHz BS, min FSS, min
4 0.01 0.02
7 0.51 0.44
11 7.64 3.57
14 54.00 16.77
17 254.70 60.17
21 —1 197.83

Ansufficient RAM for BS.

Table 3 RAM requirements
in the rigid-wall duct

f,kHz BS, GB FSS, GB
4 0.006 0.006
7 0.110 0.110
11 0.800 0.510
14 3.170 1.600
17 9.290 3.780
21 — 8.460

Ansufficient RAM for BS.

a matrix order (NMQ) of 776,304 is required to resolve accurately
all cut-on modes.

The CPU time requirementsin minutes for BS and FSS are given
in Table 2. The CPU time shown in Table 2 is that required to obtain
the solution vector {®} in the rigid-wall duct after the system matrix
was assembled. The source was a plane wave source (p, = 1), and
the normalized exit impedance was chosen so that the duct was
reflection free (¢ = 1). Although the CPU time for BS and FSS are
comparablefor frequenciesat and below 7 kHz, FSS is considerably
more efficient at the higher frequencies. Note that at a frequency of
17 kHz, BS requires 4.25 h of CPU time compared to 1 h for FSS.
In addition, BS was unable to obtain a solution at a frequency of
21 kHz because the RAM requirementsfor BS exceeded the 13-GB
limit of the computer platform.

RAM requirements (in gigabytes) for BS and FSS for the rigid-
wall duct are tabulated in Table 3. RAM requirements for the two
solversare comparablefor frequenciesatand below 7 kHz; however,
FSS consumes considerably less RAM at the higher frequencies.
For example, BS requires 9.29 GB of RAM at 17 kHz, whereas FSS
requires only 3.78 GB. Note that the RAM requirement of BS at
a frequency of 21 kHz exceeded the 13-GB limit of the computer
platform. On the other hand, the FSS obtained the solution vector
using only 8.46 GB of RAM at this frequency.

To check the accuracy of the solution vectors obtained from the
two solvers, the author has used the noise suppression in decibels
as a metric. This metric is physically more meaningful than the
error norm of the computed solution vector becauseit is the quantity
perceivedby the human ear as the noise source propagatesdown the
duct. The solution vector {®} obtained from each equation solver
was used to compute numerically the noise suppressionlevels AdB
[see Eq. (6)], for the reflection-free plane wave source solution. It
is easily shown that the reflection-free, plane wave source, mode
solution in the rigid-wall duct is

p= e—ikz (67)

so there is zero noise suppression in the rigid-wall duct, that is,
AdB = 0. Equation (67) is easily derived from Eqs. (59-64) with
BL=B%=0+0i,k, =k, =0, p,=1, and { = 1. The noise sup-
pression levels AdB computed from the solver solutions for the
rigid-wall duct are tabulatedin Table 4 to three decimal digits of ac-
curacy. The noise suppressionlevels are in excellentagreement with
the mode solution value of zero decibels at all frequencies. As ex-
pected, BS and FSS give identical results for the noise suppression.

B. Soft-Wall Duct Studies

The acoustic pressure disturbance in the duct is more interesting
when the lower wall of the duct is lined with a sound absorbing ma-
terial. Results have been computed for a soft-wall duct containing

Table 4 Noise suppression
in the rigid-wall duct

f,kHz BS, dB FSS, dB
4 0.000 0.000
7 0.000 0.000
11 0.001 0.001
14 0.001 0.001
17 0.002 0.002
21 —2 0.002
Ansufficient RAM for BS.

Table 5 Normalized resistance and
reactance for the ceramic material

£, kHz R X
4 0.36 0.76
7 2.61 —3.66
11 0.67 1.14
14 1.60 -2.26
17 0.59 0.54
21 1.23 ~1.59

Table 6 Transverse wave
numbers in the soft-wall duct

f.kHz ke ke
4 m/H  2557+1.94i
7 2r/H 134842595
11 3w/H 2772+ 1.61i
14 4x/H  36.97+5.09
17 St/H  29.85+1.09
21 6m/H 33544228

Table 7 Noise suppression in the soft-wall duct

f,kHz Mode theory, dB BS, dB FSS, dB
4 14.68 14.62 14.62
7 76.19 75.29 75.29
11 5.42 5.38 5.38
14 31.09 30.98 30.98
17 137.36 137.14 137.14
21 7.37 7.34 7.34

a ceramic material, that is, liner. Table 5 shows the predicted resis-
tance R and predicted reactance y of the ceramic material, that is,
B =R+iy. Itis easily shown that the reflection-free, nonplanar
source, single-mode solution in the soft-wall duct is

px,y,2) = [cos(kxx) + (ikﬁB/kx) sin(kxx)]e_ikfz (68)

Equation (68) is easily derived from Eqs. (59-64) with k, =0,
= k/k., and p, =[cos(k.x) + (ikBE/k,) sin(k,x)]. In this case,
the noise suppression is a finite value, but the transverse wave
number k, is difficult to determine because the transcendental
equation (63) cannot be solved analytically for k,. Consequently,
the solution to this transcendental equation was obtained using a
Newton-Raphson iterative method (see Ref. 7) with the rigid-wall
solutions as the initial guesses. Table 6 shows the transverse wave
number k, obtained from the Newton-Raphson solution to the tran-
scendental equation (63). The initial guess (ko) used to obtain the
transverse wave number k, is also specified in Table 6.

RAM and CPU time were computed for the soft-wall duct de-
scribedin the preceding paragraph. As expected,the RAM and CPU
time for the soft-wall duct were identical to those of the rigid-wall
duct (see Tables 2 and 3) and are, therefore, not presented. Table 7
compares the FSS and BS noise suppressionlevels to those of mode
theory in the soft-wall duct when the duct is 1 m in length (L = 1).
Noise suppressionlevels obtained from the BS and FSS solutionare
identical, and they are in excellentagreement with the mode theory.

In a recent paper} a numerical method for extracting the
impedance of an acoustic material located in a two-dimensionalduct
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Table 8 Educed resistance and reactance spectrum
of the ceramic liner

Resistance R Reactance x

f,kHz Known FSS educed Known FSS educed
4 0.36 0.33 0.76 0.71
7 2.61 2.67 —3.66 —-3.62
11 0.67 0.63 1.14 1.09
14 1.60 1.54 —2.26 —2.21

was developed and validated. The impedance extraction method re-
quired input of the source pressure p;, the exit impedance ¢, and
upper wall pressure. The FSS computer code described here has
been linked to this impedance extraction technique to provide the
capability to extractimpedances in three-dimensional sound fields.
Because measured three-dimensional data were not available, the
inputs required to educe the impedance were obtained from the
mode solution givenin Eq. (68) with k, =0 and k, givenin Table 6.
Resistance and reactance educed using FSS are compared to the
known values in Table 8. Excellent comparisons were obtained
between the known and educed resistance and reactance values.
Impedance eductions for frequencies above 14 kHz were not per-
formed because the CPU times to educe the impedance became
excessive.

VII. Conclusions

A zero flow, fully three-dimensional,rectangularduct code (FSS)
that accounts for variable surface impedance liners and is capable
of spanning the full range of frequencies currently of interestin na-
celle liner research has been developed. FSS uses a state-of-the-art,
fully sparse, equation solver (for solution of linear systems of equa-
tions) to acquire the capability to study high-frequency sound waves
that may require nearly 800,000 grid points for resolution. Over the
range of frequencies of current interest in nacelle liner research,
noise suppressionlevels predicted from FSS are in excellent agree-
ment with those predicted from mode theory. The single-processor
performance (RAM and CPU time) of FSS has been compared to
that of the more commonly used BS. BS and FSS have equal per-
formance for frequencies equal to or below 7 kHz; however, the
performance of FSS relative to BS increases monotonically with
frequency. Results have shown that BS is 4.25 times slower and
consumes 2.5 times more RAM than FSS at 17 kHz. As an applica-

tion, FSS was combined with an optimizationalgorithmand used to
educe the impedance spectrumof a ceramic liner, for frequenciesup
to 14 kHz. Good comparison between the FSS educed and known
impedance spectrumwas observed. The primary problem with using
FSS to perform optimization studies at frequencies above 14 kHz
is excessive CPU time. The results of this paper support the recom-
mendation, therefore, that research be directed toward exploitation
of the multiprocessor capability of FSS to further reduce CPU time
so that optimization studies above 14 kHz are tractable.
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