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Three-Dimensional Rectangular Duct Code
with Application to Impedance Eduction

Willie R. Watson¤

NASA Langley Research Center, Hampton, Virginia 23681-2199

A zero � ow, fully three-dimensional, variable impedance, rectangular duct aeroacoustics code that spans the
frequency spectrum of interest in duct liner research is developed. The governing equations and boundary con-
ditions in the duct are solved numerically using the � nite element methodology. The methodology makes use of
a state-of-the-art, sparse equation solver to obtain the capability to study high-frequency sound waves that may
require millions of grid points for resolution. Noise suppression levels predicted from the code are in excellent
agreement with those obtained from mode theory. The single-processor performance of the solver, relative to that
of the more commonlyused band solver, increases with frequency. At a frequency of 17 kHz, the band solver is 4.25
times slower and consumes 2.5 times more memory than the fully sparse equation solver. The duct aeroacoustics
code is combined with an optimization algorithm and used successfully to educe the impedance spectrum of a
ceramic liner. The primary problem with using the methodology to perform optimization studies at frequencies
above 14 kHz is excessive central processor unit time. The results support the recommendation that research be
directed toward exploitation of the multiprocessor capability of the solver to further reduce central processor unit
time.

Nomenclature
!
A;

Ã
A = amplitude of right- and left-moving acoustic

pressure mode
[A]; [ NA]; [B] = system matrices; order is NMQ
[Aq ]; [Bq ] = major blocks of [A]; order is NM
[Ae]; [AS]; [AV ] = local element matrices; order is 8
[A]; [B]; [C]; = local wall impedance matrices; order is 8
[F ]; [G]
[ Nar ]; [ Nbr ]; [ Ncr ] = minor blocks of [A]; order is M
[BV ]; [C V ]; = local element volume matrices;
[DV ]; [GV ] order is 8
[cq ]; [ fq ] = major blocks of [L]; order is NM
c0; ½0 = ambient sound speed and density
[D]; [L] = diagonal and unit lower triangular matrices;

order is NMQ
fD Ag; fO Ag = vector of diagonal and off-diagonal

coef� cients in a sparse matrix
[dq ]; [I] = diagonal matrix and identity matrix;

order is NM
E , Nm = error function and three-dimensionalbasis

functions
fFg, fFRg = vectors of length NMQ containing source

effects
fF1g, fF2g = vectors of length NM containing source

pressures
f , ps = source frequency and source plane acoustic

pressure
H , W , L = height, width, and length of duct
h, w, l = height, width, and length of a � nite element
i =

p
¡1

k, kx , ky , kz = free-space, transverse, spanwise, and axial
wave numbers
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kx0 = initial estimate for kx

N , M , Q = number of transverse, spanwise and axial
grid lines in the duct

NA, NL = number of nonzeroes in upper triangular
part of a sparse matrix

fNCg; fC N g = pointer vectors for a sparse matrix
NF = number of � ll-ins
P , p = acoustic pressure eigenmode and acoustic

pressure disturbance
R, Â = normalized resistance and normalized

reactance
t = dimensional time
V , S = computational volume and computational

surface
x , y, z = transverse, spanwise, and axial coordinates
¯ L , ¯ R , ¯B , ¯U = normalized admittances of wall lining
N̄, N³ = normalized admittance and normalized

impedance of the duct exit
1dB = noise suppression level, dB
³ L , ³ R , ³ B , ³U = normalized impedances of wall lining
f8g, f8eg = global and local vector of node pressures
f N8g, f N8Rg = intermediate vectors of length NMQ for

forward substitution
Á = axial acoustic power
r2 , Er = Laplace and gradient operator
¢ = vector dot product

Subscripts

KI = matrix coef� cient in the Kth row and Ith
column of a matrix

m = local node counter, 1; 2; : : : ; 8
q = major block counter, 1; 2; : : : ; Q
R = reordered system
r = minor block counter, 1; 2; : : : ; N
s = source plane index

Superscripts

e = element number
R, L, B, U = right sidewall, left sidewall, lower wall,

and upper wall of duct
S,V = element surface and element volume
T = matrix or vector transpose
* = complex conjugate
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I. Introduction

F AN noise accountsfor a signi� cant portionof community noise
radiated from commercial aircraft engines. Noise reduction re-

search today focuseson reducingthe perceivednoise levelsof future
aircraftbyhalfrelativeto currentlevels.Installationof acoustictreat-
ment, that is, liners, into the nacellesof aircraft engines remains one
of the most effective means for achieving these noise reduction
goals. However, future aircraft engines are expected to have engine
ducts with much shorter length to diameter ratios than traditional
aircraft. The shorter length to diameter ratios, that is, higher bypass
ratios, will severely tax the ability of conventional liners to absorb
engine noise effectively.To achieve the required noise reductionfor
the higher bypass ratios, more advanced liners are needed.1 These
include double- and triple-layer liners as well as those liners with
variable surface impedances. The acoustic treatment must be op-
timized to provide suf� cient noise reduction for the higher bypass
ratios of the engine ducts.

To optimize the treatment for maximum sound suppression,fully
three-dimensional aeroacoustic codes, which account for realistic
geometries and increased liner complexity, are needed. The aero-
acoustic codes must be numerically based because exact solutions
are not possible for realistic geometries nor for wall impedance
variations. Recent research in impedance eduction techniques has
also highlighted the need for three-dimensional numerically based
codes to perform accurate impedance measurements.2 Currently,
industry and government design codes treat only two-dimensional
designs. Although several approximate three-dimensional models
are available,3 these models make simplifying assumptions that are
not generally valid for acoustic disturbancespropagatingwithin the
walls of an aircraft nacelle. Within an aircraft nacelle, the engine
noise is often dominated by a few harmonics of a fundamental
frequency. It is, therefore, convenient to use a frequency-domain
analysis to take full advantage of the presence of only a few har-
monics in the acoustic � eld.

From a cursory examination of the physical size of engine na-
celles on current aircraft, and from knowledge of the predominant
fan tones, a three-dimensional acoustic model will require upward
of 100,000 degrees of freedom at even moderate frequencies. A
second complication is that the matrix equations resulting from
frequency-domain analysis are complex and inde� nite. Complex,
inde� nite systems of matrix equations require special techniquesto
obtain their solution, and these techniques become dif� cult to im-
plement ef� ciently for large systemsof matrix equations.Currently,
band solvers are used to obtain the solution to large sparse sys-
tems of equations in nacelle aeroacoustics.2 When applied in three-
dimensional computational methods, however, the band solvers
require an excessive amount of CPU time and RAM. This require-
ment has limited nacelle aeroacoustic codes to the study of low-
frequencysound sources in either two-dimensionalor axisymmetric
nacelles.

The purpose of this work is to develop a zero � ow, fully three-
dimensional, variable impedance, rectangular duct code for duct
liner aeroacoustics. To the author’s knowledge, this represents the
� rst effort to develop a fully three-dimensional aeroacoustic code
that is capable of spanning the full range of frequencies of current
interest in duct liner research.First, the frequency-domaindifferen-
tial equation and boundary conditions are presented. The solution
for the acoustic � eld is then approximated by a conventional � nite
element method. The � nite element method leads to a large, sparse
linear system of equations.A fully sparse equationsolver is applied
to reduce the CPU time and RAM required for three-dimensional
solutions.RAM and CPU time statisticsof the fullysparse solverare
comparedto thatof themore commonlyusedbandsolver.Noise sup-
pression levels computed from the fully sparse solver are compared
to those predicted from a mode theory for the full range of frequen-
cies of current interest in nacelle liner research. As an application,
the three-dimensionalmodel is combinedwith an optimizationalgo-
rithm and used to educe the impedance spectrum of a ceramic liner.

II. Governing Equations and Boundary Conditions
Figure 1 shows the three-dimensional,rectangular-ductgeometry

and coordinate system used in this study. The volume enclosed by

Fig. 1 Three-dimensional rectangular duct and coordinate system.

the duct is W units in width, H units in height, and L units in length.
At the source and exit plane of the domain, respectively, the source
plane pressure ps and the exit plane normalized (dimensionless)
impedance N³ are known. The source plane pressure and normal-
ized exit impedance are assumed functions of position along their
respective boundaries. Throughout this paper, all impedances are
normalized with the characteristics impedance, that is, ½0c0 , of the
air in the duct. Each wall of the duct is lined with a locally reacting
sound absorbingmaterial, that is, liner, with normalized impedance
denoted by ³ . The normalized impedance is a function of position
along the duct axis and the duct perimeter so that

³ D

8
>>><

>>>:

³ L [if y D 0; and (0 · x · H; 0 · z · L)]

³ R [if y D W; and (0 · x · H; 0 · z · L )]

³ B [if x D 0; and (0 · y · W; 0 · z · L )]

³U [if x D H; and (0 · y · W; 0 · z · L )]

9
>>>=

>>>;
(1)

The equationthatdescribesthepropagationof linear,steady-state,
acoustic pressure disturbanceswithin the duct depicted in Fig. 1 is
the Helmholtz equation (see Ref. 4):

r2 p C k2 p D 0 (2)

where a time convention of the form ei2¼ f t has been assumed and
the free space wave number k is de� ned in the usual manner, that is,
k D .2¼ f /=c0 . Although not considered here, Eq. (2) may be gen-
eralized to include uniform mean � ows or be suitably transformed
to cylindricalcoordinatesand used to study cylindricalduct geome-
tries. Along the source plane of the duct .z D 0/ the sound source
pressure is known:

p D ps (3)

At the exit plane (z D L ) the ratio of acoustic pressure to the nor-
mal component of acoustic particle velocity must equal the exit
impedance. When expressed in terms of the acoustic pressure dis-
turbance, the exit boundary condition is4

@p

@n
D ¡ik

³
p
N³

´
(4)

The duct walls are assumed locally reacting, so that the wall bound-
ary condition is4

@p

@n
D ¡ik

³
p

³

´
(5)

When the normalized wall impedance function ³ is known,
Eqs. (2–5) form a well-posed boundary value problem that can
be solved to obtain the acoustic pressure disturbance in the duct.
Once this pressure disturbance is obtained, it can be used to obtain
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the noise suppression in decibels 1dB that is produced by the wall
lining4:

1dB D 10

µ
log10

Á.0/

Á.L/

¶

Á.z/ D
1

2
Re

(
i

2¼½0 f

Z W

0

Z H

0

µ
p.x; y; z/

@p¤.x; y; z/

@z

¶
dx dy

)

(6)

Generally, it is desirable to design an optimal liner. This is
achievedby repeatedlycycling through the solutionto the boundary
value problem [Eqs. (2–5)] for given values of the wall impedance
function ³ , until the impedance function that maximizes the sound
suppression1dB is obtained.Conversely, if the upper wall acoustic
pressurepro� le is known, the impedance³ can be determined using
an iterative procedure.2 This procedure consists of repeated cycling
through the solution to the boundary value problem described by
Eqs. (2–5) and obtaining the upper wall acoustic pressure pro� le
for each impedance function ³ . As each new wall pressure pro� le
is computed, it is compared to the known pro� le until convergence
is achieved within an accepted error tolerance.

Whether the objective is to obtain the wall lining that maximizes
the noise suppressionfor a given wall impedance function (optimal
liner design) or to obtain the unknownimpedancefor a known upper
wall pressure (impedanceeduction), an exact solution for the acous-
tic pressure � eld is not obtainable except for severely restrictive as-
sumptions on the impedance functions. The question is, thus, not
whether to use a numerical techniqueto obtain the acousticpressure
disturbance, but rather which numerical technique to use. Because
of the promising results obtainedby the � nite elementmethodology
in other � elds of continuum mechanics and from initially promis-
ing applicationsto two-dimensionalaeroacousticsapplications,2 the
� nite element methodology was chosen for this study.

III. Finite Element Methodology
The general description of the � nite element methodology that

is presented in this paper is detailed in the following step-by-step
procedure5;6: 1) discretizationof the computational domain, 2) ap-
proximationsfor theunknownvariables,3)derivationof theelement
stiffnessmatrix,4) assemblyof the systemmatrix,and5) implemen-
tation of boundary conditions.

This sequence of steps describes the actual processes followed in
setting up the system matrix equation, which must be solved by an
equation solver.

A. Discretization of the Computational Domain
When applied to the current three-dimensional, duct aeroacous-

tics problem, the � nite element method may be interpreted as an
approximation to the continuous acoustic � eld as an assemblage of
rectangularprism elements as shown in Fig. 2. Here, evenly spaced
points N , M , and Q are assumed in the transverse, spanwise, and
axial directions, respectively. A typical rectangular prism element
with transverse,spanwise,and axial dimensionsh, w, and l is shown
in Fig. 3. The rectangularprism element consists of eight local node
numbers labeled 1, 2; : : : 8, respectively, as shown in Fig. 3. The
objective is to obtain the unknown acousticpressuredisturbancesat
each of the NMQ nodes.

B. Approximations of the Unknown Variables
Within each element, p is approximatedas a combinationof eight

linearly independent basis functions:

p D
m D 8X

m D 1

Nm pm (7)

N1 D
³

1 ¡ x

h

´³
1 ¡ y

w

´³
1 ¡ z

l

´

Fig. 2 Finite element discretization of three-dimensional computa-
tional domain.

Fig. 3 Typical three-dimensional element.

N2 D
³

1 ¡ x

h

´³
y

w

´³
1 ¡ z

l

´

N3 D
.xy/

.wh/

³
1 ¡ z

l

´
; N4 D

³
x

h

´³
1 ¡ y

w

´³
1 ¡ z

l

´

N5 D
³

1 ¡ x

h

´³
1 ¡ y

w

´³
z

l

´
; N6 D

³
1 ¡ x

h

´³
y

w

´³
z

l

´

N7 D
.xyz/

.whl/
; N8 D

³
x

h

´³
1 ¡ y

w

´³
z

l

´
(8)

The basis functions N1; N2; : : : ; N8 comprisea completeset of basis
functions.The normalizedadmittancefunctions, that is, the recipro-
cal of the normalized impedance functions, are expanded in similar
series:

1= N³ D N̄ D
³

1 ¡ x

h

´µ³
1 ¡ y

w

´
N̄
5 C

³
y

w

´
N̄
6

¶

C
³

x

h

´µ³
y

w

´
N̄
7 C

³
1 ¡ y

w

´
N̄
8

¶
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1

³ L
D ¯ L D

³
1 ¡ z

l

´µ³
1 ¡ x

h

´
¯ L

1 C
³

x

h

´
¯ L

4

¶

C
³

z

l

´µ³
1 ¡ x

h

´
¯ L

5 C
³

x

h

´
¯ L

8

¶

1

³ R
D ¯R D

³
1 ¡ z

l

´µ³
1 ¡ x

h

´
¯ R

2 C
³

x

h

´
¯ R

3

¶

C
³

z

l

´µ³
1 ¡ x

h

´
¯ R

6 C
³

x

h

´
¯ R

7

¶

1

³ B
D ¯B D

³
1 ¡ z

l

´µ³
1 ¡ y

w

´
¯B

1 C
³

y

w

´
¯ B

2

¶

C
³

z

l

´µ³
1 ¡ y

w

´
¯ B

5 C
³

y

w

´
¯ B

6

¶

1

³ U
D ¯U D

³
1 ¡ z

l

´µ³
y

w

´
¯U

3 C
³

1 ¡ y

w

´
¯U

4

¶

C
³

z

l

´µ
.x/

.w/
¯U

7 C
³

1 ¡ y

w

´
¯U

8

¶
(9)

C. Derivation of the Element Stiffness Matrix
Galerkin’s � nite element method is used to minimize the � eld er-

ror and developthe element stiffnessmatrix.The � eld error function
is de� ned as

E D r2 p C k2 p (10)

Contributions to the minimization of the � eld error function for a
typical element due to local node m are

Z

V

E Nm dV D
Z

V

[r2 p C k2 p]Nm dV (11)

The second derivative terms in Eq. (11) are reduced to � rst deriva-
tives using Green’s second identity:

Z

V

E Nm dV D
Z

V

£
¡ Er p ¢ ErNm C k2 pNm

¤
dV C

Z

S

@p

@n
Nm dS

(12)

Elimination of the second derivative terms from the surface integral
in Eq. (12) is required so that the linear basis functions Nm can
be used. Elimination of the second derivative terms from the inte-
gral also has the advantage that all impedance boundary conditions
can be incorporated into this surface integral. The incorporation
of the boundary condition into the surface integral also allows a
choice of basis functions that do not have to satisfy explicitly any
impedance boundary conditions.

The contribution to the surface integral
Z

S

@p

@n
Nm dS (13)

is identically zero for all elements except those that lie along an
impedanceboundary.Substitutingtheexit planeboundarycondition
into the surface integral in Eq. (13) gives, along the exit boundary,

Z

S

@p

@n
Nm dS D ¡ik

Z

S

³
p
N³

´
Nm dS (14)

whereas for elements that lie along the upper, lower, and sidewalls
of the duct

Z

S

@p

@n
Nm dS D ¡ik

Z

S

³
p

³

´
Nm dS (15)

The contribution to the minimization of the � eld error for each
element e when collected for each of the eight local nodes m is
expressed in matrix form as

8
>>>>><

>>>>>:

R
V

E N1 dV
R

V
E N2 dV

:::R
V

E N8 dV

9
>>>>>=

>>>>>;

D [Ae]f8eg (16)

[Ae] D [AV ] C [AS ]; f8eg D fp1; p2; p3; p4; p5; p6; p7; p8gT

(17)

In Eq. (17), [AV ] and [AS ] are the contributions to [Ae] due to the
element volume and the impedance boundaries, respectively. Each
matrix in Eq. (17) is an 8 £ 8, complex, symmetric matrix that is
given explicitly as

[AV ] D
k2whl

216
[GV ] ¡ wl

36h
[BV ] ¡

hl

36w
[C V ] ¡ wh

36l
[DV ] (18)

[ GV ] D

2

666666666664

8 4 2 4 4 2 1 2

4 8 4 2 2 4 2 1

2 4 8 4 1 2 4 2

4 2 4 8 2 1 2 4

4 2 1 2 8 4 2 4

2 4 2 1 4 8 2 4

1 2 4 2 2 2 8 4

2 1 2 4 4 4 4 8

3

777777777775

(19)

[ BV ] D

2

666666666664

4 2 ¡2 ¡4 2 1 ¡1 ¡2

2 4 ¡4 ¡2 1 2 ¡2 ¡1

¡2 ¡4 4 2 ¡1 ¡2 2 1

¡4 ¡2 2 4 ¡2 ¡1 1 2

2 1 ¡1 ¡2 4 2 ¡2 ¡4

1 2 ¡2 ¡1 2 4 ¡4 ¡2

¡1 ¡2 2 1 ¡2 ¡4 4 2

¡2 ¡1 1 2 ¡4 ¡2 2 4

3

777777777775

(20)

[ C V ] D

2

666666666664

4 ¡4 ¡2 2 2 ¡2 ¡1 1

¡4 4 2 ¡2 ¡2 2 1 ¡1

¡2 2 4 ¡4 ¡1 1 2 ¡2

2 ¡2 ¡1 4 1 ¡1 ¡2 2

¡2 2 1 ¡1 4 ¡4 ¡2 2

¡2 2 1 ¡1 ¡4 4 2 ¡2

¡1 1 2 ¡2 ¡2 2 4 ¡4

1 ¡1 ¡2 2 2 ¡2 ¡4 4

3

777777777775

(21)

[ DV ] D

2

666666666664

4 2 1 2 ¡4 ¡2 ¡1 ¡2

¡4 4 2 1 ¡2 ¡4 ¡2 ¡1

¡2 2 4 2 ¡1 ¡2 ¡4 ¡2

2 ¡2 ¡4 4 ¡2 ¡1 ¡2 ¡4

¡2 2 1 ¡1 4 2 1 2

¡2 2 1 ¡1 ¡4 4 2 1

¡1 ¡2 ¡4 ¡2 1 2 4 2

¡2 ¡1 ¡2 ¡4 2 1 2 4

3

777777777775

(22)

[AS] D ¡
ikhw

144
[A] ¡

ikwl

144
[B] ¡

ikwl

144
[C] ¡

ikhl

144
[F ] ¡

ikhl

144
[G]

(23)
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[ A ] D

2

666666666664

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 A55 A56 A57 A58

0 0 0 0 A56 A66 A67 A57

0 0 0 0 A57 A67 A77 A78

0 0 0 0 A58 A57 A78 A88

3

777777777775

;

A55 D 9 N̄
5 C 3 N̄

6 C N̄
7 C 3 N̄

8

A56 D 3 N̄
5 C 3 N̄

6 C N̄
7 C N̄

8

A57 D N̄
5 C N̄

6 C N̄
7 C N̄

8

A58 D 3 N̄
5 C N̄

6 C N̄
7 C 3 N̄

8

A66 D 3 N̄
5 C 9 N̄

6 C 3 N̄
7 C N̄

8

A67 D N̄
5 C 3 N̄

6 C 3 N̄
7 C N̄

8

A77 D N̄E
5 C 3 N̄

6 C 9 N̄
7 C 3 N̄

8

A78 D N̄
5 C N̄

6 C 3 N̄
7 C 3 N̄

8

A88 D 3 N̄
5 C N̄

6 C 3 N̄
7 C 9 N̄

8

(24)

[ B ] D

2

666666666664

B11 0 0 B14 B15 0 0 B18

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

B14 0 0 B44 B48 0 0 B48

B15 0 0 B48 B55 0 0 B58

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

B18 0 0 B48 B58 0 0 B88

3

777777777775

;

B11 D 9¯ L
1 C 3¯ L

4 C 3¯ L
5 C ¯ L

8

B14 D 3¯ L
1 C 3¯ L

4 C ¯ L
5 C ¯ L

8

B15 D 3¯ L
1 C ¯ L

4 C 3¯ L
5 C ¯ L

8

B18 D ¯ L
1 C ¯ L

4 C ¯ L
5 C ¯ L

8

B44 D 3¯ L
1 C 9¯ L

4 C ¯ L
5 C 3¯ L

8

B48 D ¯ L
1 C 3¯ L

4 C ¯ L
5 C 3¯ L

8

B55 D 3¯ L
1 C ¯ L

4 C 9¯ L
5 C 3¯ L

8

B58 D ¯ L
1 C ¯ L

4 C 3¯ L
5 C 3¯ L

8

B88 D ¯ L
1 C 3¯ L

4 C 3¯ L
5 C 9¯ L

8

(25)

[ C ] D

2

666666666664

0 0 0 0 0 0 0 0

0 C22 C23 0 0 C26 C27 0

0 C23 C33 0 0 C27 C37 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 C26 C27 0 0 C66 C67 0

0 C27 C37 0 0 C67 C77 0

0 0 0 0 0 0 0 0

3

777777777775

;

C22 D 9¯ R
2 C 3¯R

3 C 3¯ R
6 C ¯ R

7

C23 D 3¯ R
2 C 3¯R

3 C ¯R
6 C ¯R

7

C26 D 3¯ R
2 C ¯ R

3 C 3¯R
6 C ¯R

7

C33 D 3¯ R
2 C 9¯R

3 C ¯R
6 C 3¯ R

7

C36 D ¯ R
2 C ¯ R

3 C ¯ R
6 C ¯ R

7

C37 D ¯ R
2 C 3¯ R

3 C ¯ R
6 C 3¯R

7

C66 D 3¯ R
2 C ¯ R

3 C 9¯R
6 C 3¯ R

7

C67 D ¯ R
2 C ¯ R

3 C 3¯ R
6 C 3¯R

7

C77 D ¯ R
2 C 3¯ R

3 C 3¯R
6 C 9¯ R

7

(26)

[ F ] D

2

666666666664

F11 F12 0 0 F15 F16 0 0

F12 F22 0 0 F16 F26 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

F15 F16 0 0 F55 F56 0 0

F16 F26 0 0 F56 F66 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3

777777777775

;

F11 D 9¯ B
1 C 3¯B

2 C 3¯B
5 C ¯B

6

F12 D 3¯ B
1 C 3¯B

2 C ¯ B
5 C ¯ B

6

F15 D 3¯ B
1 C ¯ B

2 C 3¯ B
5 C ¯ B

6

F16 D ¯ B
1 C ¯ B

2 C ¯B
5 C ¯B

6

F22 D 3¯ B
1 C 9¯B

2 C ¯ B
5 C 3¯B

6

F26 D ¯ B
1 C 3¯ B

2 C ¯ B
5 C 3¯ B

6

F55 D 3¯ B
1 C ¯ B

2 C 9¯ B
5 C 3¯B

6

F56 D ¯ B
1 C ¯ B

2 C 3¯ B
5 C 3¯ B

6

F66 D ¯ B
1 C 3¯ B

2 C 3¯ B
5 C 9¯B

6

(27)

[ G ] D

2

666666666664

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 G33 G34 0 0 G37 G38

0 0 G34 G44 0 0 G38 G48

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 G37 G38 0 0 G77 G78

0 0 G38 G48 0 0 G78 G88

3

777777777775

;

G33 D 9¯U
3 C 3¯U

4 C 3¯U
7 C ¯U

8

G34 D 3¯U
3 C 3¯U

4 C ¯U
7 C ¯U

8

G37 D 3¯U
3 C ¯U

4 C 3¯U
7 C ¯U

8

G38 D ¯U
3 C ¯U

4 C ¯U
7 C ¯U

8

G44 D 3¯U
3 C 9¯U

4 C ¯U
7 C 3¯U

8

G48 D ¯U
3 C 3¯U

4 C ¯U
7 C 3¯U

8

G77 D 3¯U
3 C ¯U

4 C 9¯U
7 C 3¯U

8

G78 D ¯U
3 C ¯U

4 C 3¯U
7 C 3¯U

8

G88 D ¯U
3 C 3¯U

4 C 3¯U
7 C 9¯U

8

(28)
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D. Assembly of the System Matrix
Assembly of the system matrix, that is, a matrix representing the

entire system, from the element stiffness matrices is a fundamental
feature of all � nite element computations. Appropriate shifting of
rows and columns is all that is required to add the local element ma-
trix [Ae] directly into the system matrix.5;6 The system of equations
resulting from the assembly of the elements is of the form

[ NA]f8g D f0g (29)

[ NA] D

2

666664

[A1] [B2]

[B2]T [A2] [B3]

[B3]T [A3] [B4]
: : :

: : :
: : :

[BQ ]T [AQ ]

3

777775

f8g D ff81g; f82g; f83g; : : : ; f8QggT (30)

Each major block ([Aq ] and [Bq ]) is an NM £ NM complex matrix,
and the diagonal major blocks ([Aq ]) are symmetric.

E. Implementation of the Sound-Source Boundary Condition
The system of equationsgivenby Eq. (29) can be solved to obtain

the solution vector once the sound-sourceboundary condition, that
is, Eq. (3), has been substituted.To satisfy the sound-sourcebound-
ary condition, all nodal values of the acoustic pressure at the source
plane are simply set to the known value of source pressure ps . This
is achieved by modifying Eq. (30) to

[A]f8g D fF g (31)

[A] D

2

666664

[I] [0]

[0] [A2] [B3]

[B3]T [A3] [B4]
: : :

: : :
: : :

[BQ]T [AQ]

3

777775

fFg D

8
>>>>><

>>>>>:

fF1g
fF2g
f0g
:::

f0g

9
>>>>>=

>>>>>;

; fF2g D ¡[B2]
T fF1g (32)

where fF1g is a vector of length NM that contains the value of the
source pressure ps at the NM nodes in the source plane. Note that
only the � rstNM rowsandcolumnsof [ NA] [seeEq. (29)] aremodi� ed
by application of the sound-sourceboundary condition.The substi-
tution of a sound-source boundary condition such as Eq. (3) into a
matrix equation such as Eq. (29) is described in detail elsewhere.5

IV. Equation Solvers
The system matrix equation [Eq. (31)] may be solved on a dig-

ital computer to obtain the solution vector. The choice of an equa-
tion solver that can function in an ef� cient manner is of paramount
concern. In the simplest formulation of an equation solver, both the
zero and nonzerocoef� cientwithin the system matrix [A] are stored
and operated upon. This approach requires approximately .NMQ/2

storage locations, and the work, that is, the total number of arith-
metic operations, required to obtain the solution vector is approx-
imately .NMQ/3. This method of solution is impractical for three-
dimensionalaeroacousticsapplicationsbecause there is not enough
RAM to store the .NMQ/2 coef� cients on modern computers.

Fortunately, the system matrix equation (31) is amenable to so-
lution techniques that take advantageof the special character of the
system matrix. In particular, the system matrix is symmetric and
thinly populated or sparse. The two most commonly used methods
for solving sparse equation systems such as Eq. (31) are the band
solver and the fully sparse solver.

A. Band Solver
The banded form of Eq. (31) is well suited for repeated solutions

of large systems of equations. The band solver (BS) used in this
paper is based on a Gauss–Doolittle factorizationof the coef� cient
matrix, followed by the sequential operationsof forward and back-
ward substitutionto obtain the solutionvector.The Gauss–Doolittle
factorizationof [A] is readily obtainable (see Ref. 7):

[A] D [L][D][L]T (33)

[L] D

2

666664

[c1]

[ f2] [c2]

[ f3] [c3]
: : :

: : :

[ fQ ] [cQ ]

3

777775

[D] D

2

666664

[d1]

[d2]

[d3]
: : :

[dQ]

3

777775
(34)

The matrix coef� cients in [L] and [D] are determined by applying
the rules of block matrix multiplication to Eq. (33).7

Equation (31) decomposes into two triangular systems,

[L]f N8g D fF g (35)

[D][L]T f8g D f N8g (36)

The solutionsto the lower triangularsystem[Eq. (35)] and the upper
triangular system [Eq. (36)] are obtained using forward and back-
ward substitution, respectively. We achieve economy of RAM and
CPU time by taking into account that only the Q diagonal major
blocks [Aq ], and the .Q ¡ 1/ off-diagonalmajor blocks [Bq ] need to
be stored or operated on during the solution phase. During the for-
ward and backward substitution phases of the solution, we need to
retain only [cq ]; [ fq ], and [dq ]. Thus, to achieve economy of RAM,
we overwrite [cq ] into [Aq ] and [ fq ] into [Bq ] during the solution
phase.

B. Fully Sparse Solver
BS achieves economy of RAM and CPU time by allowing for

storage and arithmetic operations only on coef� cients within the
major blocks of [A]. However, a signi� cant number of coef� cients
within the major blocks of [A] are zero. Each major block [Aq ] and
[Bq ] [see Eq. (32)] is an NM £ NM block-tridiagonalmatrix:

2

6666664

[ Na1] [ Nc1]

[ Nb2] [ Na2] [ Nc2]

[ Nb3] [ Na3] [Nc3]
: : :

: : :
: : :

[ NbN ] [ NaN ]

3

7777775
(37)

Each minor block of [A] ([Nar ]; [ Nbr ] and [ Ncr ]) is a complex M £ M
tridiagonal matrix. Thus, the major blocks of [A] are also highly
sparse.

The sparseness of the major blocks of [A] can be exploited for
improved ef� ciency by using a more sophisticated re� nement of
the sparse solver than a BS provides. In the re� ned version of the
sparsesolver[fullysparsesolver(FSS)], all computationand storage
are performed only with the nonzero coef� cients within the major
blocks of [A]. In this section the major tasks involved in the appli-
cation of FSS to the solution of Eq. (31) are brie� y explained. The
successof FSS is due to improved technologies,for example, sparse
data storage formats, sparse reorderingalgorithms, sparse symbolic
factorization,sparsenumerical factorization,and forward/backward
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solutionphases, and bookkeepingstrategies that are ideal for imple-
mentation on a digital computer. More detailed information may be
found in Refs. 8 and 9. The FSS equation-solvingstrategy and stor-
age formats are demonstrated on the following symmetric system
of equations:

[A]f8g D fF g (38)

[A] D

2

66666664

A11 A12 A13 0 A15 A16

A12 A22 0 A24 0 0

A13 0 A33 0 0 0

0 A24 0 A44 A45 0

A15 0 0 A45 A55 0

A16 0 0 0 0 A66

3

77777775

fFg D

8
>>>>>><

>>>>>>:

F1

F2

F3

F4

F5

F6

9
>>>>>>=

>>>>>>;

; f8g D

8
>>>>>><

>>>>>>:

81

82

83

84

85

86

9
>>>>>>=

>>>>>>;

(39)

1. Sparse Data Storage Format
The sparse descriptionsof the symmetric system matrix are fully

described by the four one-dimensionalvectors fO Ag; fC N g; fD Ag
and fNCg:

fO Ag D fA12; A13; A15; A16; A24; A45gT

fC N g D f2; 3; 5; 6; 4; 5gT (40)

fD Ag D fA11; A22; A33; A44; A55; A66gT

fNCg D f4; 1; 0; 1; 0; 0gT (41)

The pointer vectors fC N g and fNCg fully describe the nonzeropat-
tern of [A], whereas the numerical values of [A] are contained in
fO Ag and fD Ag. Note that fD Ag contains the numerical values of
the diagonal coef� cients of [A], and fO Ag contains the numerical
values associated with the off-diagonal nonzero coef� cients. The
pointer vector fNCg contains the number of off-diagonal nonzero
coef� cients in the upper triangular part of each row of [A], and
fC N g containsthe columnnumbersassociatedwith the off-diagonal
nonzero coef� cients in fO Ag. The columnwise storage order pre-
sented here was chosen because it is easier to implement than a
rowwise order.

2. Sparse Reordering Algorithms
For maximum ef� ciency, one should never factorize and solve

a sparse system such as Eq. (31) directly. The system of equa-
tions should be reorderedusing a reorderingvector fREORDERg to
obtain

[B]f8Rg D fFR g (42)

The numerical values in [B]; f8Rg and fFRg are identical to those
in [A], f8g, and fFg, respectively;however, these numerical values
have been moved to different locations in the reorderedsystem.The
reordered system [Eq. (42)] may be factorized and solved much
more ef� ciently than the original system [Eq. (31)]. The reordering
vector, that is, fREORDERg, is then used to reordervector f8R g and
recover the solutionfor f8g. The purposeof reorderingalgorithms10

[such as multiple minimum degrees (MMD) or nested dissection] is
to provide fREORDERg.

Without reordering, the Gauss–Doolittle factorizationof [A] is

[A] D [L][D][L]T (43)

[L]T D

2

666666664

1 L12 L13 0 L15 L16

0 1 NL23 L24
NL25

NL26

0 0 1 NL34
NL35

NL36

0 0 0 1 L45
NL46

0 0 0 0 1 NL56

0 0 0 0 0 1

3

777777775

(44)

During the factorization,many of the zero-valueterms appearing in
the upper triangular part of [A] are nonzero in the upper triangular
part of [L]T . These extra nonzero terms created during the factor-
ization of [A] are referred to as � ll-ins and are denoted by NLK I .
In the upper triangular part of [L]T one has eight extra (or new)
nonzero � ll-ins. As a result, one de� nes

NF D 8; NL D NA C NF D 6 C 8 D 14 (45)

Ingeneral,the numberof nonzerocoef� cients in theuppertriangular
part of [L]T , that is, NL, is much larger than those in [A], that is,
NA.

Applying the MMD reorderingalgorithm to [A] will result in the
following reordering vector:

fREORDERg D f4; 6; 3; 5; 1; 2gT (46)

The methodology used by MMD to determine fREORDERg in-
volves dynamic programming techniques. (A full discussionof this
methodologyis beyondthe scopeof this paper.) Reorderingthe rows
and columns in Eq. (31) according to fREORDERg gives

[B]f8R g D fFR g (47)

fBg D

2

66666664

A44 0 0 A45 0 A24

0 A66 0 0 A16 0

0 0 A33 0 A13 0

A45 0 0 A55 A15 0

0 A16 A13 A45 A11 A12

A24 0 0 0 A12 A22

3

77777775

fFRg D

8
>>>>>><

>>>>>>:

F4

F6

F3

F5

F1

F2

9
>>>>>>=

>>>>>>;

; f8R g D

8
>>>>>><

>>>>>>:

84

86

83

85

81

82

9
>>>>>>=

>>>>>>;

(48)

Now one factorizes [B] to obtain

[B] D [L][D][L]T ; [L]T D

2

66666664

1 0 0 L14 0 L16

0 1 0 0 L25 0

0 0 1 0 L35 0

0 0 0 1 L45
NL46

0 0 0 0 1 L56

0 0 0 0 0 1

3

77777775

(49)

Note that the reorderedmatrix [B] can be factorizedmore ef� ciently
than [A] because there is only one � ll-in, that is, NL46 , in [L]T .

3. Sparse Symbolic Factorization
The reordered matrix [B] is fully describedby the following four

vectors:

fNCg D f2; 1; 1; 1; 1; 0gT

fD Ag D fA44; A66; A33; A55; A11; A22gT (50)

fC N g D f4; 6; 5; 5; 5; 6gT

fO Ag D fA45; A24; A16; A13; A15; A12gT (51)
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Before performing the numerical factorization of the factored ma-
trix, it is necessary to go through the sparse symbolic factorization
so that 1) the nonzero pattern of [L]T can be determined (including
the locations of � ll-ins) and 2) the value of NL can be determined
to allocate adequate RAM for [L]T .

On completion of the sparse symbolic factorization phase, the
pointer vectors fNC g and fC N g that fully describe the nonzero
pattern in [L]T are completely known, and NL is determined:

fNCg D f2; 1; 1; 2; 1; 0gT ; fC N g D f4; 6; 5; 5; 5; 6; 6gT

N L D N A C N F D 6 C 1 D 7 (52)

4. Sparse Numerical Factorization Phase
In this phase, the numerical values in [L]T and [D] for the

reordered matrix [B] are computed:

fO Ag D fL14; L16; L25; L35; L45; L46; L56gT (53)

fD Ag D f1; 1; 1; 1; 1; 1gT (54)

D I I D

8
><

>:

B11 .I D 1/

BI I ¡
I ¡ 1X

K D 1

DK K LK I .I D 2; 3; : : : ; 6/

9
>=

>;
(55)

L I J D
8
>>><

>>>:

BI J

D I I
.I D 1; J D 2; : : : ; 6/

BI J ¡
I ¡ 1X

K D 1

DK K LK I LK J

D I I
.I 6D 1; J D I C 1; : : : ; 6/

9
>>>=

>>>;
(56)

Note that the � rst column of [D] and [L] is computed � rst. Sub-
sequent columns of [L] and [D] are computed using Eqs. (55) and
(56). Because the diagonals of [L] are known a priori, the diagonal
values of [D] are overwritten into the unit diagonal values of [L]
for computationalef� ciency.

5. Forward/Backward Solution Phase
The solution to the reorderedsystem [Eq. (47)] is obtained in two

phases.
1) In the � rst phase (forward solution phase), an intermediate

solution vector f N8Rg is computed from the solution of the matrix
equation

[L]f N8R g D fFR g (57)

2) In the second phase (backward solution phase), the solution
vector for the reordered system f8Rg is computed from the solution
to the matrix equation

[D][L]T f8Rg D f N8Rg (58)

The vector f8R g is reordered using fREORDERg to obtain the so-
lution vector f8g, which satis� es the system matrix equation (38).

V. Mode Solution
Exact solutions for the acoustic pressure � eld in the duct do not

exist for arbitrary forms of the normalized impedance functions.
It is possible, however, to develop a modal solution when these
impedance functions are constant.This modal solution will be used
to validate the accuracy of the equation solvers that were presented
in the preceedingdiscussions.The single mode solution (in the duct
of Fig. 1) for constant impedanceis obtainedby applyingseparation
of variables to the boundary value problem described in Eqs. (2–5):

p.x; y; z/ D [
!
Ae¡ikz z C

Ã
Aei kz z]P (59)

!
A D

R W

0

R H

0
ps P dx dy

R W

0

R H

0
P2 dx dy

;
Ã
A D

.kz
N̄ ¡ k/

.kz
N̄ C k/

!
Ae¡2ikz L (60)

.kz/
2 D .k/2 ¡ .kx /2 ¡ .ky/

2 (61)

.ky W / tan.ky W / ¡
.ikW /[¯ R C ¯ L ]£

1 C ¯ L ¯ R.kW /2
¯

.ky W /2
¤ D 0 (62)

.kx H / tan.kx H / ¡
i.k H /[¯U C ¯B ]£

1 C ¯ B ¯U .k H /2
¯

.kx H /2
¤ D 0 (63)

P D
µ

cos.kx x/ C
ik¯B

kx
sin.kx x/

¶µ
cos.ky y/ C

ik¯ L

ky
sin.ky y/

¶

(64)

Note that ky and kx are obtainedby solving the transcendentalequa-
tions (62) and (63), respectively.

VI. Results
An in-house computer code that assembles the system matrix in

either BS or FSS format was written and combined with the appro-
priate solver to provide the capability to solve three-dimensional
aeroacoustics problems. RAM and CPU time statistics were com-
pared for both solvers, and the noise suppression predicted from
the solver solutions was compared to that predicted from the mode
theory presented in the preceding section. Results were computed
on an in-house SGI ORIGIN 2000 computer platform with 13 GB
of RAM and eight processors.Results were run on a single proces-
sor with double-precision (64-bit) arithmetic. The duct geometry
was identical to that of the NASA Langley Research Center � ow
impedance tube.2 This three-dimensional duct has a square cross
section 0.0508 m in width (W D H D 0:0508 m) and 0.812 m in
length (L D 0:812 m). The upper and two side walls of the duct
are rigid .³ L D ³ R D ³U D 1/, and the lower wall has a constant
impedance. A much more complete description of the duct is given
in Ref. 2. All calculations were performed at standard atmospheric
conditions, and the source frequency was chosen to span the full
range of frequenciescurrently of interest in duct liner research.

A. Rigid-Wall Duct Studies
In the rigid-wall duct, that is, ³ L D ³ R D ³ B D ³ U D 1, the tran-

scendental equations (62) and (63) have exact analytical solutions
for the spanwise and transverse wave numbers:

ky W D 0; ¼; 2¼; : : : (65)

kx H D 0; ¼; 2¼; : : : (66)

These exact wave numbers [Eqs. (65) and (66)] have been used
to determine the � nite element grid required to resolve all cut-on
(propagating) modes in the duct.Table 1 shows the minimum values
of N ; M , and Q requiredto resolve all cut-onmodes for frequencies
up to 21 kHz. Note that the current industry practice is to use scale
models as small as one-� fth the size of full-scale engines. The full-
scale frequency range of interest is typically0.5–4.0 kHz. Thus, the
frequency range of interest for the smallest scale, that is, a one-� fth
scale model, is 2.5–20 kHz. Therefore, computational results for
frequenciesbeyond 21 kHz are not presented in this paper. Further,
in determining N , M , and Q in Table 1, the author has used the gen-
erally acceptedrule that approximately12 pointsper wavelengthare
required (in each of the three coordinate directions) to resolve ac-
curately a cut-on mode. Note that at the highest frequency (21 kHz)

Table 1 Grid points required to resolve
cut-on modes in the rigid-wall duct

f , kHz N M Q NMQ

4 6 6 114 4,104
7 12 12 200 28,800
11 18 18 313 101,412
14 24 24 399 229,824
17 30 30 484 435,600
21 36 36 599 776,304
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Table 2 CPU time requirements
in the rigid-wall duct

f , kHz BS, min FSS, min

4 0.01 0.02
7 0.51 0.44
11 7.64 3.57
14 54.00 16.77
17 254.70 60.17
21 ——a 197.83

aInsuf� cient RAM for BS.

Table 3 RAM requirements
in the rigid-wall duct

f , kHz BS, GB FSS, GB

4 0.006 0.006
7 0.110 0.110
11 0.800 0.510
14 3.170 1.600
17 9.290 3.780
21 ——a 8.460

aInsuf� cient RAM for BS.

a matrix order (NMQ) of 776,304 is required to resolve accurately
all cut-on modes.

The CPU time requirements in minutes for BS and FSS are given
in Table 2. The CPU time shown in Table 2 is that required to obtain
the solutionvector f8g in the rigid-wallduct after the system matrix
was assembled. The source was a plane wave source (ps D 1), and
the normalized exit impedance was chosen so that the duct was
re� ection free ( N³ D 1/. Although the CPU time for BS and FSS are
comparablefor frequenciesat and below 7 kHz, FSS is considerably
more ef� cient at the higher frequencies.Note that at a frequencyof
17 kHz, BS requires 4.25 h of CPU time compared to 1 h for FSS.
In addition, BS was unable to obtain a solution at a frequency of
21 kHz because the RAM requirementsfor BS exceeded the 13-GB
limit of the computer platform.

RAM requirements (in gigabytes) for BS and FSS for the rigid-
wall duct are tabulated in Table 3. RAM requirements for the two
solversare comparablefor frequenciesat andbelow7 kHz; however,
FSS consumes considerably less RAM at the higher frequencies.
For example, BS requires9.29 GB of RAM at 17 kHz, whereas FSS
requires only 3.78 GB. Note that the RAM requirement of BS at
a frequency of 21 kHz exceeded the 13-GB limit of the computer
platform. On the other hand, the FSS obtained the solution vector
using only 8.46 GB of RAM at this frequency.

To check the accuracy of the solution vectors obtained from the
two solvers, the author has used the noise suppression in decibels
as a metric. This metric is physically more meaningful than the
error normof the computedsolutionvectorbecauseit is the quantity
perceivedby the human ear as the noise source propagatesdown the
duct. The solution vector f8g obtained from each equation solver
was used to compute numerically the noise suppression levels 1dB
[see Eq. (6)], for the re� ection-free plane wave source solution. It
is easily shown that the re� ection-free, plane wave source, mode
solution in the rigid-wall duct is

p D e¡ikz (67)

so there is zero noise suppression in the rigid-wall duct, that is,
1dB D 0. Equation (67) is easily derived from Eqs. (59–64) with
¯ L D ¯ R D 0 C 0i; kx D ky D 0, ps D 1, and N³ D 1. The noise sup-
pression levels 1dB computed from the solver solutions for the
rigid-wall duct are tabulated in Table 4 to three decimal digits of ac-
curacy.The noise suppressionlevels are in excellentagreementwith
the mode solution value of zero decibels at all frequencies. As ex-
pected, BS and FSS give identical results for the noise suppression.

B. Soft-Wall Duct Studies
The acoustic pressure disturbance in the duct is more interesting

when the lower wall of the duct is lined with a sound absorbingma-
terial. Results have been computed for a soft-wall duct containing

Table 4 Noise suppression
in the rigid-wall duct

f , kHz BS, dB FSS, dB

4 0.000 0.000
7 0.000 0.000
11 0.001 0.001
14 0.001 0.001
17 0.002 0.002
21 ——a 0.002

aInsuf� cient RAM for BS.

Table 5 Normalized resistance and
reactance for the ceramic material

f , kHz R Â

4 0.36 0.76
7 2.61 ¡3.66
11 0.67 1.14
14 1.60 ¡2.26
17 0.59 0.54
21 1.23 ¡1.59

Table 6 Transverse wave
numbers in the soft-wall duct

f , kHz kx0 kx

4 ¼=H 25.57C 1.94i
7 2¼=H 13.48C 25.95i
11 3¼=H 27.72C 1.61i
14 4¼=H 36.97C 5.09i
17 5¼=H 29.85C 1.09i
21 6¼=H 33.54C 2.28i

Table 7 Noise suppression in the soft-wall duct

f , kHz Mode theory, dB BS, dB FSS, dB

4 14.68 14.62 14.62
7 76.19 75.29 75.29
11 5.42 5.38 5.38
14 31.09 30.98 30.98
17 137.36 137.14 137.14
21 7.37 7.34 7.34

a ceramic material, that is, liner. Table 5 shows the predicted resis-
tance R and predicted reactance Â of the ceramic material, that is,
³ B D R C iÂ . It is easily shown that the re� ection-free, nonplanar
source, single-mode solution in the soft-wall duct is

p.x; y; z/ D
£
cos.kx x/ C

¡
ik¯B

¯
kx

¢
sin.kx x/

¤
e¡i kz z (68)

Equation (68) is easily derived from Eqs. (59–64) with ky D 0,
N³ D k=kz , and ps D [cos.kx x/ C .ik¯ B=kx / sin.kx x/]. In this case,
the noise suppression is a � nite value, but the transverse wave
number kx is dif� cult to determine because the transcendental
equation (63) cannot be solved analytically for kx . Consequently,
the solution to this transcendental equation was obtained using a
Newton–Raphson iterative method (see Ref. 7) with the rigid-wall
solutions as the initial guesses. Table 6 shows the transverse wave
number kx obtained from the Newton–Raphson solution to the tran-
scendental equation (63). The initial guess (kx0) used to obtain the
transverse wave number kx is also speci� ed in Table 6.

RAM and CPU time were computed for the soft-wall duct de-
scribed in the precedingparagraph.As expected,the RAM and CPU
time for the soft-wall duct were identical to those of the rigid-wall
duct (see Tables 2 and 3) and are, therefore, not presented. Table 7
compares the FSS and BS noise suppressionlevels to those of mode
theory in the soft-wall duct when the duct is 1 m in length (L D 1).
Noise suppressionlevels obtained from the BS and FSS solutionare
identical, and they are in excellentagreementwith the mode theory.

In a recent paper,2 a numerical method for extracting the
impedanceof an acousticmaterial located in a two-dimensionalduct
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Table 8 Educed resistance and reactance spectrum
of the ceramic liner

Resistance R Reactance Â

f , kHz Known FSS educed Known FSS educed

4 0.36 0.33 0.76 0.71
7 2.61 2.67 ¡3.66 ¡3.62
11 0.67 0.63 1.14 1.09
14 1.60 1.54 ¡2.26 ¡2.21

was developedand validated.The impedance extractionmethod re-
quired input of the source pressure ps , the exit impedance N³ , and
upper wall pressure. The FSS computer code described here has
been linked to this impedance extraction technique to provide the
capability to extract impedances in three-dimensionalsound � elds.
Because measured three-dimensional data were not available, the
inputs required to educe the impedance were obtained from the
mode solutiongiven in Eq. (68) with ky D 0 and kx given in Table 6.
Resistance and reactance educed using FSS are compared to the
known values in Table 8. Excellent comparisons were obtained
between the known and educed resistance and reactance values.
Impedance eductions for frequencies above 14 kHz were not per-
formed because the CPU times to educe the impedance became
excessive.

VII. Conclusions
A zero � ow, fully three-dimensional,rectangularduct code (FSS)

that accounts for variable surface impedance liners and is capable
of spanning the full range of frequenciescurrently of interest in na-
celle liner research has been developed.FSS uses a state-of-the-art,
fully sparse, equation solver (for solution of linear systems of equa-
tions) to acquire the capabilityto studyhigh-frequencysound waves
that may require nearly 800,000 grid points for resolution.Over the
range of frequencies of current interest in nacelle liner research,
noise suppression levels predicted from FSS are in excellent agree-
ment with those predicted from mode theory. The single-processor
performance (RAM and CPU time) of FSS has been compared to
that of the more commonly used BS. BS and FSS have equal per-
formance for frequencies equal to or below 7 kHz; however, the
performance of FSS relative to BS increases monotonically with
frequency. Results have shown that BS is 4.25 times slower and
consumes 2.5 times more RAM than FSS at 17 kHz. As an applica-

tion, FSS was combinedwith an optimizationalgorithmand used to
educe the impedance spectrumof a ceramic liner, for frequenciesup
to 14 kHz. Good comparison between the FSS educed and known
impedancespectrumwas observed.The primaryproblemwith using
FSS to perform optimization studies at frequencies above 14 kHz
is excessive CPU time. The results of this paper support the recom-
mendation, therefore, that research be directed toward exploitation
of the multiprocessorcapability of FSS to further reduce CPU time
so that optimization studies above 14 kHz are tractable.
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